• <small id="gggg8"></small>
    <nav id="gggg8"></nav>
    
    
  • 
    
    <nav id="gggg8"></nav>
    
    
  • <sup id="gggg8"></sup>
    <sup id="gggg8"></sup>
  • 无码不卡高清毛片一区,国产黑色丝袜在线,国产精品视频一区国模私拍,国产成人国拍亚洲精品

    您好!歡迎光臨烜芯微科技品牌官網(wǎng)!

    深圳市烜芯微科技有限公司

    ShenZhen XuanXinWei Technoligy Co.,Ltd
    二極管、三極管、MOS管、橋堆

    全國(guó)服務(wù)熱線:18923864027

    如何為DC-DC選擇適合的電感與電容
    • 發(fā)布時(shí)間:2020-08-04 18:19:10
    • 來源:
    • 閱讀次數(shù):
    如何為DC-DC選擇適合的電感與電容
    電感與電容
    隨著手機(jī)、PDA以及其它便攜式電子產(chǎn)品在不斷小型化,其復(fù)雜性同時(shí)也在相應(yīng)提高,這使設(shè)計(jì)工程師面臨的問題越來越多,如電池使用壽命、占板空間、散熱或功耗等。
    使用DC/DC轉(zhuǎn)換器主要是為了提高效率。很多設(shè)計(jì)都要求將電池電壓轉(zhuǎn)換成較低的供電電壓,盡管采用線性穩(wěn)壓器即可實(shí)現(xiàn)這一轉(zhuǎn)換,但它并不能達(dá)到基于開關(guān)穩(wěn)壓器設(shè)計(jì)的高效率。本文將介紹設(shè)計(jì)工程師在權(quán)衡解決方案的占用空間、性能以及成本時(shí)必須要面對(duì)的常見問題。
    大信號(hào)與小信號(hào)響應(yīng)
    開關(guān)轉(zhuǎn)換器采用非常復(fù)雜的穩(wěn)壓方法保持重/輕負(fù)載時(shí)的高效率。現(xiàn)在的CPU內(nèi)核電源要求穩(wěn)壓器提供快速而通暢的大信號(hào)響應(yīng)。例如,當(dāng)處理器從空閑模式切換至全速工作模式時(shí),內(nèi)核吸收的電流會(huì)從幾十微安很快地上升到數(shù)百毫安。
    隨著負(fù)載條件變化,環(huán)路會(huì)迅速響應(yīng)新的要求,以便將電壓控制在穩(wěn)壓限制范圍之內(nèi)。負(fù)載變化幅度和速率決定環(huán)路響應(yīng)是大信號(hào)響應(yīng)還是小信號(hào)響應(yīng)。我們可根據(jù)穩(wěn)態(tài)工作點(diǎn)定義小信號(hào)參數(shù)。因此,我們一般將低于穩(wěn)態(tài)工作點(diǎn)10%的變化稱為小信號(hào)變化。
    實(shí)際上,誤差放大器處于壓擺范圍(slew limit)內(nèi),由于負(fù)載瞬態(tài)發(fā)生速度超過誤差放大器的響應(yīng)速度,放大器并不控制環(huán)路,所以,在電感器電流達(dá)到要求之前,由輸出電容器滿足瞬態(tài)電流要求。
    大信號(hào)響應(yīng)會(huì)暫時(shí)使環(huán)路停止工作。不過,在進(jìn)入和退出大信號(hào)響應(yīng)之前,環(huán)路必須提供良好的響應(yīng)。環(huán)路帶寬越高,負(fù)載瞬態(tài)響應(yīng)速度就越快。
    從小信號(hào)角度來看,盡管穩(wěn)壓環(huán)路可以提供足夠的增益和相位裕度,但是開關(guān)轉(zhuǎn)換器在線路或負(fù)載瞬態(tài)期間仍然可能出現(xiàn)不穩(wěn)定狀態(tài)和振鈴現(xiàn)象。在選擇外部元件時(shí),電源設(shè)計(jì)工程師應(yīng)意識(shí)到這些局限性,否則其設(shè)計(jì)就有可能遇到麻煩。
    電感器選型
    以圖1所示的基本降壓穩(wěn)壓器為例,說明電感器的選型。
    對(duì)大多數(shù)TPS6220x應(yīng)用而言,電感器的電感值范圍為4.7uH~10uH。電感值的選擇取決于期望的紋波電流。一般建議紋波電流應(yīng)低于平均電感電流的20%。如等式1所示,較高的VIN或VOUT也會(huì)增加紋波電流。電感器當(dāng)然必須能夠在不造成磁芯飽和(意味著電感損失)情況下處理峰值開關(guān)電流。
    以增加輸出電壓紋波為代價(jià),使用低值電感器便可提高輸出電流變化速度,從而改善轉(zhuǎn)換器的負(fù)載瞬態(tài)響應(yīng)。高值電感器則可以降低紋波電流和磁芯磁滯損耗。
    可將線圈總損耗結(jié)合到損耗電阻(Rs)中,該電阻與理想電感(Ls)串聯(lián),組成了一個(gè)如圖1所示的簡(jiǎn)化等效電路。
    盡管Rs損耗與頻率有關(guān),但在產(chǎn)品說明書中仍對(duì)直流電阻(RDC)進(jìn)行了定義。該電阻取決于所采用的材料或貼片電感器的構(gòu)造類型,在室溫條件下通過簡(jiǎn)單的電阻測(cè)量即可獲得。RDC的大小直接影響線圈的溫度上升。因此,應(yīng)當(dāng)避免長(zhǎng)時(shí)間超過電流額定值。
    線圈的總耗損包括RDC中的耗損和下列與頻率相關(guān)聯(lián)的耗損分量:磁芯材料損耗(磁滯損耗、渦流損耗);趨膚效應(yīng)造成的導(dǎo)體中的其他耗損(高頻電流位移);相鄰繞組的磁場(chǎng)損耗(鄰近效應(yīng));輻射損耗
    可將上述所有耗損分量組合在一起構(gòu)成串聯(lián)耗損電阻(Rs)。耗損電阻主要用于定義電感器的品質(zhì)。然而,我們無法用數(shù)學(xué)方法確定Rs。因此,我們一般采用阻抗分析儀在整個(gè)頻率范圍內(nèi)對(duì)電感器進(jìn)行測(cè)量。這種測(cè)量可以確定XL(f)、Rs(f)和Z(f)個(gè)別分量。
    我們將電感線圈電抗(XL)與總電阻(Rs)之比稱為品質(zhì)因素Q,參見公式(2)。品質(zhì)因素被定義為電感器的品質(zhì)參數(shù)。損耗越高,電感器作為儲(chǔ)能元件的品質(zhì)就越低。
    品質(zhì)—頻率圖可以幫助選擇針對(duì)特定應(yīng)用的最佳電感器結(jié)構(gòu)。如測(cè)量結(jié)果圖2所示,可以將損耗最低(Q值最高)的工作范圍定義為一直延伸到品質(zhì)拐點(diǎn)。如果在更高的頻率使用電感器,損耗會(huì)劇增(Q降低)。
    良好設(shè)計(jì)的電感器效率降低微乎其微。不同的磁芯材料和形狀可以相應(yīng)改變電感器的大小/電流和價(jià)格/電流關(guān)系。采用鐵氧體材料的屏蔽電感器尺寸較小,而且不輻射太多能量。選擇何種電感器往往取決于價(jià)格與尺寸要求以及相應(yīng)的輻射場(chǎng)/EMI要求。
    輸出電容器
    消除輸出電容器可以在成本和占板空間兩方面實(shí)現(xiàn)節(jié)省。輸出電容器的基本選擇取決于紋波電流、紋波電壓以及環(huán)路穩(wěn)定性等各種因素。
    輸出電容器的有效串聯(lián)電阻(ESR)和電感器值會(huì)直接影響輸出紋波電壓。利用電感器紋波電流((IL)和輸出電容器的ESR可以簡(jiǎn)單地估測(cè)輸出紋波電壓。
    因此,設(shè)計(jì)時(shí)應(yīng)當(dāng)選用ESR盡可能低的電容器。例如,采用X5R/X7R技術(shù)的4.7uF到10uF電容器表現(xiàn)為10m(范圍的ESR值。輕負(fù)載(或者不考慮紋波的應(yīng)用)也可以使用容值更小的電容器。
    TI的控制環(huán)路架構(gòu)使您能夠采用自己首選的輸出電容器,同時(shí)還可以補(bǔ)償控制環(huán)路,以實(shí)現(xiàn)最佳的瞬態(tài)響應(yīng)和環(huán)路穩(wěn)定性。當(dāng)然,內(nèi)部補(bǔ)償能夠理想地支持一系列工作條件,而且能夠敏感地響應(yīng)輸出電容器參數(shù)變化。
    TPS6220x系列降壓轉(zhuǎn)換器具有內(nèi)部環(huán)路補(bǔ)償功能。因此,必須選擇支持內(nèi)部補(bǔ)償功能的外部LC濾波器。對(duì)于此類器件而言,內(nèi)部補(bǔ)償最適合16kHz的LC轉(zhuǎn)角頻率(corner frequency),即10uH電感器與10uF輸出電容器。根據(jù)一般經(jīng)驗(yàn)法則,在選用不同輸出濾波器時(shí),L*C乘積不應(yīng)當(dāng)大范圍變動(dòng)。在選擇更小的電感器或電容器值時(shí),會(huì)造成轉(zhuǎn)角頻率增加至更高頻率,因此這一點(diǎn)尤為重要。
    在從負(fù)載瞬態(tài)出現(xiàn)到打開P-MOSFET期間,輸出電容器必須提供負(fù)載所需的全部電流。輸出電容器提供的電流會(huì)造成經(jīng)過ESR的電壓降低(從輸出電壓中扣除)。ESR越低,輸出電容器提供負(fù)載電流時(shí)的電壓損耗就越低。為了降低解決方案尺寸并且提升TPS62200轉(zhuǎn)換器的負(fù)載瞬態(tài)性能,建議采用4.7uH電感器和22uF輸出電容器。
    DC-DC轉(zhuǎn)換器電路設(shè)計(jì)中電感器選擇的折衷考慮
    在大多數(shù)降壓型DC-DC開關(guān)轉(zhuǎn)換器中,成本、尺寸、電阻和電流容量決定了電感的選取。很多這種應(yīng)用都在開關(guān)轉(zhuǎn)換器數(shù)據(jù)手冊(cè)或評(píng)估板中給出了特定的電感值,但是這些值通常都針對(duì)特定應(yīng)用或者滿足特定性能標(biāo)準(zhǔn)。本文中將討論使用開關(guān)穩(wěn)壓器MAX8646的評(píng)估板來評(píng)估各種電感的效率、噪聲(輸出紋波)和暫態(tài)響應(yīng)。
    該評(píng)估板包含有一個(gè)0.47mH電感,可以同時(shí)提供較高的效率和快速負(fù)載暫態(tài)響應(yīng)。較低的電感值導(dǎo)致較低的效率,較大的電感以暫態(tài)響應(yīng)為代價(jià)提供更高的效率。本文中討論的其他電感經(jīng)過選擇可以與評(píng)估板的PCB封裝相匹配,并且能以最小的改動(dòng)(如果需要)來配合評(píng)估板的電路。
    尺寸考慮
    表1中兩個(gè)系列的電感提供不同的磁芯尺寸。它們的外形相似,但是FDV0630系列電感在電路板上要高1mm。較高的高度使得使用較短的銅線成為可能-使用更大的直徑或較少的匝數(shù),或二者兼具。
    0.2mH以及更低的電感表現(xiàn)出很低的效率,因此不考慮更小的電感。較小的電感值還帶來較大的峰值電流,它必須保持低于MAX8646的最低電流限制以防止失穩(wěn)。另一方面,大于1μH的電感也不合適。請(qǐng)注意較大的FDV0630系列電感具有相同的電感值和引腳,但是提供更低的電阻和更高的額定電流。關(guān)于電感磁芯的尺寸、材料和磁導(dǎo)率的詳細(xì)比較本文將不贅述。
    磁芯的考慮
    Toko公司的FDV系列電感采用鐵粉芯,它們提供更好的溫度穩(wěn)定性并且相對(duì)于其他可選磁芯成本更低。其他選擇是鉬坡莫合金粉末(MPP)、氣隙鐵氧體以及鐵硅鋁磁合金(Kool Mm)或高磁通磁環(huán)。鑒于混合鎳、鐵和鉬粉末的成本,MPP通常是最昂貴的選擇,鐵硅鋁磁合金是一種次昂貴的復(fù)合粉末磁芯。在多數(shù)電源中常見的罐形、E和EI形磁芯為氣隙鐵氧體。這些外形可以在必要時(shí)提供靈活性和可變性,但是成本更高。高磁通磁環(huán)通常用于濾波電感而不是電源變換電路。
    性能評(píng)估和效率比較
    圖1電路中各種電感的效率比較顯示,在輸出電流低于2A時(shí)1μH電感具有最好的效率,在低于3A時(shí)0.2μH的效率最低。在電感量相同時(shí),尺寸較大(FDV0630)直流電阻較低的電感在整個(gè)輸出電流范圍內(nèi)可提供0.5%至1%的效率提升。
    對(duì)于FDV0620系列的0.47mH和1mH電感,可以注意到在2A附近其效率曲線有一個(gè)交叉:2A以下1μH電感具有較高的效率,2A以上0.47μH的效率更高。1μH電感所具有的較大串聯(lián)電阻導(dǎo)致了這種效率的差異。
    另一種性能折衷可以從電感電流、電感電壓和輸出電壓紋波的典型波形中看出。使用電感量較小的FDV0620-0.47mH產(chǎn)生較高的峰值電流。輸出電壓紋波低于18mV峰峰值,而FDV630-1.0mH電感產(chǎn)生的紋波峰峰值剛超過12mV。峰值電流對(duì)輸出電容充電并且提供負(fù)載電流。在電容的ESR上會(huì)流入和流出較大的電流,這將產(chǎn)生較高的輸出電壓紋波。如果必要,可以通過使用較大的輸出電容來降低該紋波。
    負(fù)載暫態(tài)的比較
    不同的電感提供不同的負(fù)載暫態(tài)響應(yīng)(IC和補(bǔ)償網(wǎng)絡(luò)同樣對(duì)該響應(yīng)有貢獻(xiàn))。MAX8646需要外部補(bǔ)償,但是其他開關(guān)穩(wěn)壓器IC包含內(nèi)部補(bǔ)償,它們通常指定允許的電感值范圍。從另一方講,外部補(bǔ)償允許設(shè)計(jì)更加靈活。
    圖2和圖3給出了圖1所示電路在從2A至5A再返回至2A的負(fù)載階躍時(shí)FDV0620-0.47μH和FDV0620-1μH電感的負(fù)載暫態(tài)響應(yīng),在圖3中,外部補(bǔ)償經(jīng)過調(diào)整以配合1mH電感值。參考圖1,改變了以下三個(gè)元件來達(dá)到該目的:C10 = 1000pF,R4 = 5900W,R6 = 316W。請(qǐng)注意圖2中的輸出電壓過沖要低于圖3。對(duì)于具有相同電感量的DV0620和FDV0630系列,測(cè)量到的響應(yīng)相同。
    工作原理
    在描述了電感選擇的測(cè)量結(jié)果之后,我們現(xiàn)在概括其工作原理。下面的等式忽略真實(shí)電感的寄生特性,但是它仍可為電感的工作原理提供良好的理解:
    圖2:圖1電路使用FDV0620系列的0.47μF電感工作在3.3V輸入,1.8V輸出,2A-5A輸出電流時(shí)的負(fù)載暫態(tài)。
    高邊MOSFET在電感充電期間(tON)導(dǎo)通,將電感連接至輸入電源電壓。在確定電感值以后,可以用tON = DT替換dt,用(VIN-VOUT)替換V,然后計(jì)算DI (即di)。表2給出了圖1所示電路中DI與本文所討論的電感之間的對(duì)應(yīng)關(guān)系。圖1中電路滿足表2參數(shù)的條件是VIN= 3.3V,VOUT = 1.8V,DT=D*T,其中D為占空比(VOUT/VIN),T為開關(guān)周期(1/fS)。
    di/dt(DI/DT)的中值等于IOUT,因此峰值電流等于IOUT加DI/2。可以看到在負(fù)載電流相同時(shí)較小的電感將導(dǎo)致較大的峰值電流。
    直流電阻
    IC和電感的功率損耗可以從效率曲線得到。對(duì)于FDV0620-0.47mH,輸出電流取1A時(shí)效率為92.5%,輸出功率為1A乘以1.8V即1.8W,因此輸入功率為1.8/0.925 = 1.946W。總損耗為PIN -POUT = 0.146W。主要的功率損耗來自電感直流電阻、MOSFET RDS(ON) (導(dǎo)通電阻)以及開關(guān)損耗。IOUT 2*DCR(直流電阻)等于電感的功率損耗。
    FDV0620-0.47uH在1A輸出電流時(shí)的DCR損耗為8.3mW,占總損耗的5.7%。在IOUT= 4A,PIN = 8.1W,POUT = 7.2W (效率= PIN/POUT = 88.9%)時(shí),總損耗為PIN- POUT = 0.9W;FDV0620-0.47uH在4A時(shí)DCR損耗為132.8mW,占總損耗的14.7%。IOUT《 sup》2的結(jié)果是在較大輸出電流時(shí)DCR損耗更大。
    烜芯微專業(yè)制造二極管,三極管,MOS管,橋堆等20年,工廠直銷省20%,4000家電路電器生產(chǎn)企業(yè)選用,專業(yè)的工程師幫您穩(wěn)定好每一批產(chǎn)品,如果您有遇到什么需要幫助解決的,可以點(diǎn)擊右邊的工程師,或者點(diǎn)擊銷售經(jīng)理給您精準(zhǔn)的報(bào)價(jià)以及產(chǎn)品介紹
    相關(guān)閱讀
    无码不卡高清毛片一区
  • <small id="gggg8"></small>
    <nav id="gggg8"></nav>
    
    
  • 
    
    <nav id="gggg8"></nav>
    
    
  • <sup id="gggg8"></sup>
    <sup id="gggg8"></sup>